Behavior of decomposed ammonia borane at high pressure
نویسندگان
چکیده
منابع مشابه
In Situ High-Pressure and Low-Temperature Study of Ammonia Borane by Raman Spectroscopy
As a potential hydrogen storage material, ammonia borane (NH3BH3) has received extensive investigation among many solid-state chemical hydrides over the past few decades. 4 Ammonia borane is a lightweight molecular complex with a high hydrogen content (19.6 wt %) that exceeds the 2015 U.S. Department of Energy target (9 wt %) for on-board hydrogen storage systems. Consequently, substantial rese...
متن کاملHydrogen Release From Ammonia Borane
Development of a safe and efficient storage medium for hydrogen is integral to its use as an alternative energy source. The overall goal of the studies described in this dissertation was to investigate the use of a chemical hydride, ammonia borane (AB (19.6 wt% H2)), as a potentially efficient material for hydrogen storage. The specific goals of this study were both to develop new efficient met...
متن کاملAmmonia-Borane Complex for Hydrogen Storage
The goal of this project was to develop a high-density hydrogen storage system based on ammonia borane (AB) complex. Due to their high hydrogen capacity, AB hydrides have been employed as disposable hydrogen (H2) sources for fuel cell applications. The objectives of this project were to 1) identify viable amine-borane (AB) complexes for hydrogen storage at ambient conditions, and 2) develop a c...
متن کاملHIGH PRESSURE BEHAVIOR OF KCl: STRUCTURAL AND ELECTRONIC PROPERTIES
The high pressure behavior of the structural and electronic properties of KC1 is studied with use of the density functional pseudopotential method within local-density approximation. Atzero pressure, the rocksalt phase is found to be lower in energy than CsCl structure. However, we predict a phase transition into CsCI structure at a pressure of about 1.5 GPa. The calculated ground state pro...
متن کاملMelting and dissociation of ammonia at high pressure and high temperature.
Raman spectroscopy and synchrotron x-ray diffraction measurements of ammonia (NH(3)) in laser-heated diamond anvil cells, at pressures up to 60 GPa and temperatures up to 2500 K, reveal that the melting line exhibits a maximum near 37 GPa and intermolecular proton fluctuations substantially increase in the fluid with pressure. We find that NH(3) is chemically unstable at high pressures, partial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics and Chemistry of Solids
سال: 2015
ISSN: 0022-3697
DOI: 10.1016/j.jpcs.2014.12.004